
Software License Agreement
 DOC to PDF Converter

For .NET

Version 9

2008-2017

ALL RIGHTS RESERVED BY

SUB SYSTEMS, INC.

4380 Caldwell Palm Circle

Round Rock, TX 78665

512-733-2525

Software License Agreement

The Software is protected by copyright laws and international copyright treaties, as well as
other intellectual property laws and treaties. The Software is licensed, not sold. This
LICENSE AGREEMENT grants you the following rights:

A. This product is licensed per developer basis only. Each developer working with this
package needs to purchase a separate license.

B. The purchaser has the right to modify and link the DLL functions into their application.
Such an application is free of distribution royalties with these conditions: the target
application is not a stand-alone DOC to PDF or DOCX to PDF Converter; the target
application uses this product for one operating system platform only; and the source code
(or part) of the editor is not distributed in any form.

C. The DESKTOP LICENSE allows for the desktop application development. Your desktop
application using this product can be distributed royalty-free. Each desktop license allows
one developer to use this product on up to two development computers. A developer must
purchase additional licenses to use the product on more than two development computers.

D. The SERVER LICENSE allows for the server application development. The server
licenses must be purchased separately when using this product in a server application.
Additionally, the product is licensed per developer basis. Only an UNLIMITED SERVER
LICENSE allows for royalty-free distribution of your server applications using this product.

E. ENTERPRISE LICENSE: The large corporations with revenue more than $500 million
and large government entities must purchase an Enterprise License. An Enterprise license
is also applicable if any target customer of your product using the Software have revenue
more than $500 million. Please contact us at info@subsystems.com for a quote for an
Enterprise License.

F. Your license rights under this LICENSE AGREEMENT are non-exclusive. All rights not
expressly granted herein are reserved by Licensor.

G. You may not sell, transfer or convey the software license to any third party without
Licensor's prior express written consent.

This software is designed keeping the safety and the reliability concerns as the main

Page 1

considerations. Every effort has been made to make the product reliable and error free.
However, Sub Systems, Inc. makes no warranties against any damage, direct or indirect,
resulting from the use of the software or the manual and can not be held responsible for the
same. The product is provided 'as is' without warranty of any kind, either expressed or
implied, including but not limited to the implied warranties of suitability for a particular
purpose. The buyer assumes the entire risk of any damage caused by this software. In no
event shall Sub Systems, Inc. be liable for damage of any kind, loss of data, loss of profits,
interruption of business or other financial losses arising directly or indirectly from the use of
this product. Any liability of Sub Systems will be exclusively limited to refund of purchase
price.

Sub Systems, Inc. offers a 30 day money back guarantee with the product. Must call for an
RMA number before returning the product.

Page 2

Getting Started
 This chapter describes the contents of the software diskettes and provides a step by step

process of incorporating DOC to PDF Converter into your application.

In This Chapter
Files
License Key
Sample Conversion Code

Page 3

Files

 The package contains the WPN.DLL, TESN23.DLL, WRS8.DLL, WRW8.DLL and
PDN12.DLL files necessary to incorporate this product into your application.

The package also includes a set of files to construct a demo program. The demo program
shows by example the process of linking the DLL to your program.

DLL Demo Files:

The following demo files are included in the c_demo.zip file.

 demo.cs Source code for the demo program

demo.exe Executable demo program

 demo.csproj The project file to compile the demo.

 AssemblyInfo.cs Assembly information file

 Visual Basic Interface and Demo Files:

 Form1.vb vb source file

 dmo_vbn.vbproject The project file for the visual basic demo program.

 AssemblyInfo.vb Assembly information file for the demo program.

Page 4

License Key

 Your License Key and License number are e-mailed to you after your order is processed.
You would set the license information using the WpsSetLicenseInfo static function. This
should be preferably done before creating the Wpn object to avoid pop-up nag screens.

int WpsSetLicnseInfo(String LicenseKey, String LicenseNumber, String CompanyName);

 LicenseKey: Your license key is available in the product delivery email sent to you
upon the purchase of the product. It consists of a string in the form of
"xxxxx-yyyyy-zzzzz".

 LicenseNumber: Your license number is also available in the product delivery email. The
license number string starts with a "srab" or "smo" prefix.

 CompanyName: Your company name as specified in your order.

 Return Value: This method returns 0 when successful. A non-zero return value indicates
an error condition. Here are the possible return values:

 0 License application successful.

 1 Invalid License Key.

 2 Invalid License Number.

 3 Ran out of available licenses. Please consider purchasing additional licenses.

 Example:

result=Wpn.WpsSetLicenseInfo("xxxxx-yyyyy-zzzzz","srabnnnnn-n","Your Company
Name")

Replace the 'xxxxx-yyyyy-zzzzz' by your license key, replace "srabnnnnn-n" with your
license number, and "Your Company Name" with your company name as specified in your
order.

 Note: WpsSetLicenseInfo method should be called only once at the beginning of your
application. Calling this method for each conversion would degrade the conversion
performance.

Page 5

Sample Conversion Code

Please ensure that WPN.DLL, TESN23.DLL, and PDN12.DLL files are available in the
project directory. The WRS8.DLL and WRW8.DLL files should be copied to Windows'
system32 folder, or any other folder available in the 'path' setting. Set the reference for
WPN.DLL in your project. The TESN23.DLL, WRS8.DLL, WRW8.DLL and PDN12.DLL are
referenced indirectly by WPN.DLL.

Now set the namespace for the product:

using SubSystems.WP; // C# example

Imports SubSystems.WP ' VB Example

Now set the product license key and create an WPN type object:

Wpn.WpsSetLicenseInfo("xxxxx-yyyyy-zzzzz","srabnnnnn-n","Your Compan Name")

 Wpn wp = new Wpn() // C# example

 dim wp as Wpn ' VB example

 wp.InWebServer = true; // set to true when hosting the

 // converter in an ASP.NET app

Now use one of the following calls to convert from Word DOC/DOCX to PDF formats:

1. Convert an DOC file to a PDF file.

 wp.WpsConvertFile("test.doc","test.pdf")

2. Convert an DOC byte array to a PDF string

 Dim InData() As Byte

 Dim OutData As String

 InData = wp.WpsFileToBytes("test.doc")

Page 6

 If (InData.Length > 0) Then

 OutData = wp.WpsConvertBuffer(InData)

 If (OutData.Length > 0) Then

 ' write the pdf string to the output file

 result = wp.WpsWriteToFile("test.pdf", OutData)

 End If

 End If

Page 7

Control Methods
 These methods allow you to convert from DOC to PDF format. Please set the namespace

for the Wpn class before using these methods:

using SubSystems.WP; // C# example

Imports SubSystems.WP ' VB Example

In This Chapter
WpsConvertBuffer
WpsConvertFile
WpsFileToBytes
WpsGetLastMessage
WpsResetLastMessage
WpsSetFlags
WpsStrToBytes
WpsWriteToFile

Page 8

WpsConvertBuffer

 Convert DOC byte array to a PDF string.

String WpsConvertBuffer(InBytes)

 String InBytes; // Input byte array containing DOC document.

Return value: This function returns a string containing the converted documented.

This pdf string can be written to a disk file by using the WpsWriteToFile method.

Also, you can extract the byte array from this string by using the WpsStrToBytes method.

A null return values indicates an error.

Examples:

Convert an DOC byte array to a PDF string

 Dim InData() As Byte

 Dim OutData As String

 InData = wp.WpsFileToBytes("test.doc")

 If (InData.Length > 0) Then

 OutData = wp.WpsConvertBuffer(InData)

 If (OutData.Length > 0) Then

 ' write the pdf string to the output file

 result = wp.WpsWriteToFile("test.pdf", OutData)

 End If

 End If

Page 9

WpsConvertFile

 Convert DOC to PDF using disk files.

bool WpsConvertFile(InFile, OutFile)

 string InFile; // Input file containing DOC document

 string OutFile; // Output files, contains the converted document

Return value: This function returns TRUE when successful.

Examples:

Convert an DOC file to a PDF file.

 wp.WpsConvertFile("test.doc","test.pdf")

Page 10

WpsFileToBytes

 Read a doc file into a byte array.

byte[] WpsFileToBytes(DocFile)

 String DocFile; // Input doc file name.

 Return value: This function returns a byte array from the given file. This method can be
used to obtain the byte array to supply to the WpsConvertBuffer method.

A null return values indicates an error.

 Dim InData() As Byte

 Dim OutData As String

 InData = wp.WpsFileToBytes("test.doc")

 If (InData.Length > 0) Then

 OutData = wp.WpsConvertBuffer(InData)

 If (OutData.Length > 0) Then

 ' write the pdf string to the output file

 result = wp.WpsWriteToFile("test.pdf", OutData)

 End If

 End If

Page 11

WpsGetLastMessage

Get the last message.

int WpsGetLastMessage(WpsMessage, DebugMessage);

string WpsMessage; // Returns the default user message text in English

 string DebugMsg; // Returns any debug message associated with the last
message. The debug message need not be displayed to
the user.

 Return Value: This function returns the last message generated by the editor. This value is
valid only if saving of the messages is enabled by setting the WPFLAG_RETURN_MSG_ID
flag. This flag is set using the WpsSetFlags method.

Page 12

WpsResetLastMessage
 Reset the last editor message.

bool WpsResetLastMessage()

 Description: This function can be called before calling any other function to reset the last
error message.

Return Value: The function returns TRUE when successful.

See Also
WpsGetLastMessage
WpsSetFlags

Page 13

WpsSetFlags

 Set certain flags or retrieve the values of the flags.

int WpsSetFlags(set, flags)

 bool set; // TRUE to set the given flags, FALSE to reset the given
flags

 int flags; // Flags (bits) to set or reset. Currently, the following flag
values are available:

 WPFLAG_RETURN_MSG_ID Do not display the error messages. Save the
error code to be later retrieved using the
WpsGetLastMessage function.

Return value: This function returns the new value of all the flags. Call this function with the
'flags' parameter set to zero to retrieve flag values without modifying it.

Page 14

WpsStrToBytes

 Convert a pdf string to a byte array.

byte[] WpsStrToBytes(PdfString)

 String PdfString; // Input string containing PDF text.

 Return value: This function returns a byte array from the given string. This is a preferred
method of converting a pdf string to a byte array because it returns the raw bytes without
employing an encoding method.

A null return values indicates an error.

Example:

 Response.Clear();

 Response.Charset = "";

 Response.ContentType = "application/pdf";

 string strFileName = "test" + ".pdf";

 Response.AddHeader("Content-Disposition",

 "inline;filename=" + strFileName);

 Wpn dp = new Wpn();

 wp.InWebServer=true;

 byte[] DocBytes = wp.WpsFileToBytes("test.doc")

 String pdfString = wp.WpsConvertBuffer(DocBytes);

 Response.BinaryWrite(wp.WpsStrToBytes(pdfString));

 Response.Flush();

 Response.Close();

 Response.End();

Page 15

Page 16

WpsWriteToFile

 Write a pdf string to a disk file.

bool WpsWriteToFile(FileName, PdfString)

 string FileName; // Output file.

 string PdfString; // Pdf string to be written to the disk file

Return value: This function returns TRUE when successful.

Page 17

Control Properties
 The control properties can be before the conversion to affect the pdf output. The control

supports the following properties:

 InWebServer

 This property should be set to True when this control is used in a web server.
When this property is set to True, the control suppress the display of any dialog
and message boxes.

 Author

 Set the author name for the PDF document.

 Bookmark

 Set to true to convert the doc table-of-content to PDF bookmark. The default value
is true.

 CreDate

 Set the document creation date. The date is specified in a text string.

 Hyperlink

 Set to true to translate doc hyperlink fields to pdf hyperlinks. The default value is
true.

 Keywords

 Set the keywords for the PDF document.

 LicenseKey

 Set the product license key for the product. Your license key is e-mailed to you
after your order is processed.

Page 18

 ModDate

 Set the document modification date. The date is specified in a text string.

 Producer

 Set the producer description for the PDF document.

 Subject

 Set the subject description for the PDF document.

 Title

 Set the title for the PDF document

 CompressText

 Set to true to compress the text stream in the PDF output.

 PermFlags

 Use this flag to specify the permissions granted when the PDF document is being
viewed or manipulated. You can use one or more of the following flags using the
OR operator:

 pc.PERM_PRINT Allow printing operation

 pc.PERM_COPY Allow copying operation

 pc.PERM_MOD Allow document modification

 The OwnerPassword property must also be set for the PDF reader to honor the
permission flags.

 OwnerPassword

 Optional document owner password.

When either an owner or a user password is specified, the PDF document is
written out using Adobe standard encryption mechanism.

An owner password in the PDF document requires a PDF editor to prompt the user
for the owner password and allow PDF modification only when the supplied owner

Page 19

password matches the encrypted owner password found in the file.

 UserPassword

 Optional user password

When either an owner or a user password is specified, the PDF document is
written out using Adobe standard encryption mechanism.

A user password in the PDF document requires a PDF viewer to prompt the user
for the user password and allow PDF display only when the supplied user
password matches the encrypted user password (or owner password) found in the
file.

 EmbedFonts

 Normally the converter only embeds non-standard fonts in the PDF file. This flag
would instruct the converter to embed all fonts.

 ExactTextPlacement

 Set to True to instruct the converter to emit character width for every character
thus providing for precise text layout. This option is useful when converting a file
containing small fonts.

 NoTocUpdate

 Do not update the table-of-content. Use the original table-of-content.

 PictQuality

 Set the picture quality from 1 to 5, where 1=lowest, 5=highest, 3=default.

 UseOrigJpg

 Insert the original jpeg data into the generated pdf file.

 TaggedPdf

 Generate tagged pdf file.

 PdfA

Page 20

 Generate PDF-A compliant document.

 PdfA1b

 Generate PDF-A/1b compliant document.

 RC4_128

 Set to true to enable RC4 128 bit security when a password is specified.

 AES_128

 Set to true to enable AES 128 bit security when a password is specified.

Page 21

	Software License Agreement
	Getting Started
	Files
	License Key
	Sample Conversion Code

	Control Methods
	WpsConvertBuffer
	WpsConvertFile
	WpsFileToBytes
	WpsGetLastMessage
	WpsResetLastMessage
	WpsSetFlags
	WpsStrToBytes
	WpsWriteToFile

	Control Properties

